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There is evidence that early life exposure to chemicals increases risk of obesity. 
The prenatal and early postnatal periods appear to be critical windows of sensitivity. 
Puberty may also be a critical window of sensitivity. 
 
Early life exposures to chemical classes containing PPARγ agonists are associated with obesity. 
These chemicals include: 
 Bisphenol A (BPA) 
 Englitazone  
 Monoethylphthalate (MEP) 
 Perfluorooctanoic acid (PFOA) 
 Pioglitazone 
 Rosiglitazone 
 Tributyl Tin (TBT) 
 
Early life exposures to polyhalogenated hydrocarbons are associated with obesity.  
These chemicals include: 
 Dichlorodiphenyldichloroethylene (DDT) 
 Dichlorodiphenyltrichloroethylene (DDE) 
 Dioxin-like polychlorinated biphenyls (DL-PCBs) 
 Hexachlorocyclohexane (HCB) 
 
Evidence suggests that early life exposures to chemicals that increase risk of obesity appear to 
operate in a non-linear dose-response manner. Cachexia often occurs at high doses whereas body 
and/or adipose mass gain occurs at low doses of the same chemical. 
 
Research findings indicate there may be gender specific effects of early life chemical exposures 
that increase risk of obesity. 
 
Sincerely, 

 
Michele La Merrill, PhD MPH 

Michele La Merrill, PhD MPH 
Environmental Pediatric Fellow 
Department of Preventive Medicine 

One Gustave L. Levy Pl., 
Box 1057 
New York, NY  10029 
Tel: 212-824-7003 
Fax: 212-996-0407 
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ABSTRACT 

Childhood and adolescent rates of obesity and 
overweight are continuing to increase in much of 
the world. Risk factors such as diet composition, 
excess caloric intake, decreased exercise, genetics, 
and the built environment are active areas of etiologic 
research. The obesogen hypothesis, which postulates 
that prenatal and perinatal chemical exposure can 
contribute to risk of childhood and adolescent 
obesity, remains relatively underexamined. This 
review surveys numerous classes of chemicals for 
which this hypothesis has been explored. We 
focus on human data where they exist and also 
discuss the findings of rodent and cell culture 
studies. Organochlorine chemicals as well as several 
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classes of chemicals that are peroxisome proliferator­
activated receptor agonists are identified as possible 
risk factors for obesity. Recommendations for 
future epidemiologic and experimental research 
on the chemical origins of obesity are also 
given. Mt Sinai J Med 78:22–48, 2011.  2011 
Mount Sinai School of Medicine 
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The number of children who are obese and 
overweight continues to rise in most countries across 
the world.1 In the United States (US), the prevalence 
of obesity and overweight is growing rapidly among 
children and adolescents.2,3 For instance, West 
Virginia is among the states with highest adult obesity 
prevalence, and in a West Virginian adolescent 
medicine clinic, 37% of adolescents had an age-
and gender-adjusted body mass index (BMI; body 
weight in kg divided by height in meters squared) 
greater than the National Health and Nutrition 
Examination (NHANES) III 95th percentile.3 Rising 
obesity prevalence is a concern for many reasons. 
The risk of life-threatening diseases, such as diabetes, 
cardiovascular disease, and cancer, is increased in 
obese persons.4–6  Further, obesity has overtaken 
cigarette smoking as the most costly and detrimental 
preventive cause of terminal diseases in the US, with 
latest estimates suggesting that obesity accounts for 
17% of all US medical costs each year.7 

Although the increasing prevalence of obesity is 
usually attributed to changes in diet, physical activity, 
and underlying genetic susceptibility, the possibility 
that environmental chemicals could influence obesity 
is relatively underexplored. Early life exposure to 
environmental chemicals is beginning to be examined 
as a contributing cause of the obesity epidemic due 
to the potentially critical role of prenatal and perinatal 
metabolic programming in later risk of obesity. Thus, 
we find it may be useful to think about obesity not just 
in terms of genetics and lifestyle, but also in terms 
of how early life exposure to these ‘‘obesogenic’’ 
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chemicals might be setting the stage for weight 
gain later in life. In this review, we first discuss 
metabolic programming and the unique physiology 
of obese children and adolescents. We next examine 
the evidence of associations between chemicals and 
obesity, with an emphasis on human research results 
where they exist. There are numerous recent reviews 
focused on experimental evidence of the mechanisms 
of obesity caused by chemicals, and the interested 
reader is referred to these publications.8,9 This 
review concludes with a discussion of the strengths 
and weaknesses of obesogen research as well as 
recommendations on future directions of obesogen 
epidemiological and experimental research. Although 
obesity is closely associated with metabolic syndrome 
and diabetes, these topics are outside the scope of 
this review. 

UNIQUE SUSCEPTIBILITY OF 
OBESE CHILDREN AND ADOLESCENTS 

Prenatal and Perinatal 
Metabolic Programming 

Metabolic programming during prenatal and perinatal 
development has become an active area of obesity 
etiology research that is rife with seeming contra­
dictions. Caloric restriction during pregnancy at the 
time of the Dutch famine during World War II is 
associated with a greater occurrence of obesity in 
adult offspring.10 In contrast to a nutritionally limited 
environment, higher maternal prepregnancy BMI and 
higher gestational weight gain are associated with 
increased birth weight and fat mass at birth, and 
increased BMI in young and adult offspring.11,12 Sim­
ilarly, dietary fat–induced paternal obesity also is also 
associated with a disruption in insulin secretion and 
glucose tolerance in offspring.13 Maternal diabetes is 
also associated with increased birth weight as well 
as childhood overweight and obesity.14,15 Paradoxi­
cally, children and adults born small for gestational 
age also have an increased risk of obesity, which 
may be mediated by rapid  compensatory  postnatal  
growth.16,17 Even studies in which adiposity out­
comes are only measured in children capture adult 
risk because prepubertal BMI correlates to BMI in 
young adults, and BMI in young adults predicts BMI 
in mature adults.18 

Related to the field of metabolic programming 
are the concepts of the developmental origins of 
human adult disease (DOHAD) and windows of sus­
ceptibility to toxicants.19,20 Research in animals and 
humans shows that the developmental processes that 

occur at embryonic, fetal, and infantile stages are 
especially vulnerable to disruption from relatively 
low doses of certain chemicals (Figure 1). When 
organs and tissues are developing, they are particu­
larly at risk to toxic insult.20 This was first observed 
decades ago in the case of lead and other metals that 
could harm neurological development as a result of 
in utero and childhood exposures. This concept also 
applies to agents that alter metabolic homeostasis 
during development, which can lead to obesity, dia­

–betes, and metabolic syndrome.19,21 24 In particular, 
exposure to toxicants during the organogenesis of tis­
sues involved in metabolic homeostasis (eg, adipose, 
liver, skeletal muscle, pancreas, and brain) may play 
an important pathophysiological role in the develop­
ment of childhood obesity (Figure 1). Whereas much 
of organogenesis occurs prenatally, adipose, skele­
tal muscle, pancreas, and brain continue to develop 
postnatally.19 It remains possible that fetal adapta­
tions to toxic metabolic insults restrict the scope of 
adaptive responses to a toxic postnatal environment. 
If this were the case, one could envision DOHAD 
similar to the multistage carcinogenesis hypothesis, 
where risk of obesity results from multiple toxic 
insults that temporally span the various stages in 
which metabolic tissues are developing. 

Whereas much of organogenesis 
occurs prenatally, adipose, skeletal 
muscle, pancreas, and brain 
continue to develop postnatally. 

Unique Physiology of Obesity 

There are many reasons why children are not 
merely small adults in terms of the ways that their 
environment affects them. Similarly, the physiology 
of obese persons is not the same as the physiology 
of lean persons. Thus, it follows that obese children 
have unique physiology. In obese children, glucose 
and lipid metabolism tend to be dysfunctional, 
as evidenced by the prevalent comorbidites of 
insulin resistance, hyperlipidemia, and metabolic 
syndrome.25 Obesity is a chronic inflammatory state, 
which likely explains part of the increased incidence 
of asthma in obese children.25,26 The endocrine 
system also functions differently in obese persons. 
For instance, adipocytes produce hormones such as 
estrogen and leptin, which are produced in excess 
in obese people. It is not surprising that obesity is 
associated with decreased reproductive health, and 
there is no indication that adolescent reproductive 
health is an exception. The fact that polycystic 
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Fig 1. Maternal chemical exposures are associated with childhood obesity. 
Maternal exposure to chemicals may target offspring through gametes, placenta, 
or milk. Potential target tissues of obesogens in offspring can arise through all 
3 germ cell layers of the blastocyst, which continue to differentiate postnatally. 

ovarian syndrome is more common in obese females 
may in part be due to the altered endocrine state 
of obesity. Childhood obesity is also associated with 
entering puberty earlier.27 

The physiology of obese persons is 
not the same as the physiology of 
lean persons. 

The pharmacokinetic (PK) and pharmacody­
namic (PD) properties of environmental chemicals 
are different in obese children compared with lean 
children. Human PKPD studies tend to be overly 
simplified, in part due to the ethical concerns of 
deliberate human exposures to toxicants. Thus, PKPD 
studies in obese and/or developing mammals have 
mostly been explored in rodents. 

A given quantity of a lipophilic exposure will 
be diluted in an obese individual because their 
total adipose mass is greater than that of their lean 
peers. Body and adipose tissue weight gain over 
time furthers the dilution effect to lower serum lev­
els independently of elimination of the chemical.28 

Although all people can gain mass, the tempo­
ral dilution of chemicals by mass gain is partic­
ularly salient in children because of their rapid 
growth. Further, the metabolism of chemicals such 
as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 
dichlorodiphenyltrichloroethane (DDE) is delayed 

and half-lives extended in obese mammals relative 
–to lean mammals.29 31 Perhaps counterintuitively, as 

TCDD exposure levels decrease, the half-life actu­
ally increases.29 Thus, the chemical concentration in 
blood may be lower in obese persons due to dilution, 
but the cumulative exposure may be higher because 
of the extended half-life (particularly if exposure is 
relatively low in the case of dioxin-like compounds). 

Many candidate obesogens are lipophilic chem­
icals and are therefore deposited in fat tissues. In 
the case of TCDD, its distribution into adipose tissue 
is greater at low exposure levels.29 Obese persons 
tend to have higher lipid levels in circulation, and 
in the case of lipophilic chemicals whose blood 
concentrations are dependent on blood lipid levels, 
whole blood chemical quantities may appear higher 
in obese persons than lean persons even if total body 
burdens are equivalent.32,33 In other words, the dilu­
tion effect of higher body mass may be masked by 
higher blood lipids when sampling serum or whole 
blood to assess lipophilic chemical exposure. In some 
cases, storage of lipophilic chemicals in fatty tissues 
appears to sequester the chemicals from their toxicity 
target tissue, and thus obesity may be protective.34 

However, if the target tissue of toxicity has a high fat 
content, the lipophilic chemical will be stored where 
it is most able to cause toxicity. Thus, the notion 
of protective sequestration of lipophilic chemicals 
may be irrelevant in the case of obesogens, because 
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metabolic homeostasis is partially regulated by adi­
pose tissue. 

If the target tissue of toxicity has a 
high fat content, the lipophilic 
chemical will be stored where it is 
most able to cause toxicity. 

CANDIDATE OBESOGENS 

Persistent Organic Pollutants 

Dioxins and Dioxin-like Compounds 
Dioxins are persistent organic pollutants (POPs) that 
are primarily byproducts of industrial activities. The 
most potent dioxin is TCDD, a high-affinity ligand of 
the aryl hydrocarbon receptor (AhR), and as such its 
toxicity is mostly attributed to AhR binding as well 
as its persistence. Other AhR ligands include poly­
chlorinated dibenzofurans, and some ‘‘dioxin-like’’ 
polychlorinated biphenyls (DL-PCBs), which were 
used extensively in industrial applications. These AhR 
ligands are frequently analyzed according to toxic 
equivalents (TEQs), which multiplies the mass of 
dioxins, DL-PCBs, and furans by a potency factor that 
ranks their toxicity relative to TCDD.35 All PCBs that 
do not bind AhR are called non–dioxin like (NDL). 

Most of the prospective studies of developmental 
exposures to dioxins and PCBs had no association 
with child, adolescent, or adult obesity (Table 1). For 
instance, there was no association of either TEQ 
(calculated from exposure assessment of dioxins 
and PCBs) or PCB mass in milk on the body 
weights of toddlers (Table 1).36 Summed PCBs in 
maternal and cord plasma samples were associated 
with a transient decreased change in the standard 
deviation score (SDS, a descriptive statistic used to 
describe variability37,38) of body weight from birth 
to 3 months old in formula-fed infants (Table 1).36 

Further, prenatal PCB exposure was not associated 
with BMI or body mass of adult daughters.39 Though 
these 2 studies were fairly small, a larger prospective 
study of in utero exposure to PCBs had a trend 
of increased association with higher body weights 
in adolescent girls, yet this was not statistically 
significant nor was this seen in boys (Table 1).40 

Only 1 prospective study of developmental PCB 
exposure found a positive association with adiposity: 
PCBs in umbilical cord levels of Belgian children were 
positively associated with BMI SDS between the ages 
of 1 and 3 years old, which was when the study 
ended.41 Although the TEQ was not associated with 

BMI SDS in this study, the only dioxin-like compound 
that contributed to the TEQ was PCB118, which has 
a relatively low contribution to total TEQ.41 

The majority of the epidemiology evidence in 
favor of a positive association between PCBs and 
obesity comes from cross-sectional studies of adults, 
although a few studies that included children also 
exist (Table 1).42,43 Cross-sectional studies of adult 
PCB exposures have consistently shown a positive 

–46 association with measures of obesity.43 Further, 
there are 3 epidemiology studies of adults that found 
a positive association between dioxins and obesity 

–46 and only 1 study of adults that did not.43

Experimental research on dioxins and dioxin-
like compounds as obesogens is quite sparse and 
may be biased by high doses. High doses of 
a PCB mixture (30 mg/kg body weight/day on 
gestation day [GD] 10–18) caused a transient decrease 
in offspring body mass.47 Elsewhere prenatal and 
lactational TCDD (single exposure to 1 µg/kg body 
weight on GD 12) had no effect on adiposity in 
several mouse strains.48,49 Perhaps the dose of 
TCDD and PCBs in these studies was too high 
to detect obesogenic effects, as TCDD induces 
adipocyte differentiation at low doses and suppresses 

–52 it at high doses.50 Adipocyte differentiation is 
considered to play a role in the etiology of obesity 
primarily during childhood, as adipocyte numbers 
are currently thought to be in a steady state in adults, 
regardless of whether they are lean or obese.53,54 

As was seen with TCDD, low dose of dioxin-like 
PCB77 also stimulated adipocyte differentiation.52 

Further, recent evidence suggests that peroxisome 
proliferator activated receptor (PPAR) γ expression 
may be elevated by lower doses of TCDD and DL­
PCBs.52,55 Consistent with these findings, exposure 
to a PCB mixture (6 mg/kg body weight/day on GD 
6–postnatal day [PND] 21) was associated with a 
transient increase in body weights of offspring on 
PND 16–20, in a 34-day study.56 Whereas adult 
exposure to PCB126 (a DL-PCB) had no impact 
on body mass in mice in one study,57 another 
study found that adult mice exposed to PCBs 
have AhR-mediated increased body mass as well 
as adipocyte hypertrophy.53 

Organochlorine Pesticides 
Several persistent organochlorine pesticides have 
been implicated in obesity. Although they have 
not been in commercial use in the US for 
>20 years, they are used abroad. Dichlorodiphenyl­
trichloroethane (DDT) is rapidly metabolized to 
dichlorodiphenyldichloroethylene (p,p'-DDE), which 
has a half-life of about 10 years in humans.31 Thus, 
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Table 1. Child and Adolescent Obesity and Organochlorine Exposures Organized by Chemical Class With Ascending Ages per Chemical.

Chemical Age at Exposure (n) Design 
Duration of

Follow-Up (Sex) Exposure Outcome 

Dioxin-like compounds

TEQ of PCDDs and
DL-PCBs36 

TEQ of PCDDs43 

TEQ of PCDFs43 

TEQ of PCB11841 

TEQ of DL-PCBs43 

PCB11842 

PCB11842 

2 weeks (105) 

15–73 years (1374) 

15–73 years (1374) 

Birth (138) 

15–73 years (1374) 

14–15 years (887) 

14–15 years (792) 

Prospective 

Cross-sectional 

Cross-sectional 

Prospective 

Cross-sectional 

Cross-sectional 

Cross-sectional 

Term birth
(M/F) 

0 (M/F) 

0 (M/F) 

Term birth
(M/F) 

0 (M/F) 

0 (M) 

0 (F) 

–

–

42 months

3 years 

28.0–155.0 ng TEQ/kg milk fat 

4.6–11.2 pg TEQ/g whole blood
lipid 

2.9–6.8 pg TEQ/g whole blood
lipid 

6.0–78.7 pg TEQ/g cord plasma
lipid 

4.4–13.0 pg TEQ/g whole blood
lipid 

2.8–13.6 ng/g serum lipid 

2.4–11.6 ng/g serum lipid 

NS BW 

NS BMI ≥ 25 

NS BMI ≥ 25 

 NS change in BMI SDS∗

Increased trend of BMI ≥ 25 
(OR = 2.6 between Q4 and Q1)

† Increased BMI (β = 0.56 kg/m2 per 
doubled exposure)

† Increased BMI (β = 0.74 kg/m2 per 
doubled exposure)

NDL-PCBs

PCBs59‡ 

PCBs36‡ 

 PCBs41�

PCBs40¶ 

PCBs39¶ 

PCBs40¶ 

 PCBs42∗∗

 PCBs42∗∗

First trimester (518) 

Birth (207) 

Birth (138) 

Prenatal (594) 
Prenatal (169) 

Postnatal (594) 

14–15 years (887) 

14–15 years (792) 

Prospective 

Prospective 

Prospective 

Prospective 
Prospective 

Prospective 

Cross-sectional 

Cross-sectional 

14 months (M/F) 

Term birth–42 months
(M/F) 

1–3 years (M/F) 

14 years (M/F) 
20–50 years (F) 

14 years (M/F) 

0 (M) 

0 (F) 

18.2–67.0 ng/g maternal serum
lipid§ 

0.1–2.1 µg/L cord plasma 

9–442 ng/g cord plasma lipid 

0.5–5.5 ppm transplacenta# 

Quintiles: 0.1, 1.9, 3.5, 7.1 µg/L 
# maternal serum

0.2–23.1 total mg consumed from
milk# 

42.7–141.3 ng/g serum lipid 

30.3–98.5 ng/g serum lipid 

∗ NS rapid growth, NS BMI z score 

Decreased change in BW SDS
birth–3 months (β † = −0.4 
change in BW SDS per µg/L) 

Increased change in BMI
† SDS 1–3 years (β = 0.003 kg/m2 

SDS per ng/g lipid)
NS BW 
NS BMI, NS BW 

NS BW 

Decreased BMI (β † = −2.4 kg/m2 

per doubled exposure)†† 

Decreased BMI (β † = −2.0 kg/m2 

per doubled exposure)
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Table 1. (Continued). 

Chemical Age at Exposure (n) Design 
Duration of

Follow-Up (Sex) Exposure Outcome 

Organochlorine pesticides

DDTs58 

DDE59 

DDE39 

DDE40 

DDE40 

DDE41 

DDE40 

DDE42 

DDE42 

HCB59 

HCB60 

Prenatal (304) 

First trimester (518) 

Prenatal (169) 

Prenatal (315) 

Prenatal (277) 
Birth (138) 

Postnatal (594) 

14–15 years (887) 
14–15 years (792) 
First trimester (518) 

Birth (482) 

Prospective 

Prospective 

Prospective 

Prospective 

Prospective 
Prospective 

Prospective 

Cross-sectional 
Cross-sectional 
Prospective 

Prospective 

10.8–20.0 years (M) 

14 months (M/F) 

20–50 years (F) 

14 years (M) 

14 years (F) 
Term birth–3 years 

(M/F) 

14 years (M/F) 

0 (M) 
0 (F) 
14 months (M/F) 

Term birth–6.5 years 
(M/F) 

1.8–33.1 µg/g maternal serum
lipid 

Quartiles: 71.7, 116.9, 186.2 ng/g
maternal serum lipid 

Quintiles: 1.5, 2.9, 6.1, 9.4 µg/L 
# maternal serum

0.3–23.8 ppm transplacenta# 

0.3–23.8 ppm transplacenta# 

24–1816 ng/g cord plasma lipid 

0.2–96.3 total mg consumed from
milk# 

46.8–403.9 ng/g serum lipid 
39.3–247.1 ng/g serum lipid 
Quartiles: 22.8, 41.0, 66.3 ng/g

maternal serum lipid 
0.5–1.0 ng HCB/mL cord serum

IQR 

NS BMI, NS tricep skinfold thickness,
NS central adiposity

Increased rapid growth 6 months
(RR = 2.4 between Q2–4 and Q1),

∗ increased BMI z score 14 months
(RR = 1.2 per log ng/g lipid)

† Increased BMI (β = 2.88 kg/m2 

per µg/L between Q2–Q5 and Q1),
† increased BW (β = 9.22 kg 

per µg/L between Q2–Q5 and Q1)
Increased BW 14 years (>4 ppm 

group mean = 60.6 kg, ≤1 ppm 
group mean = 53.7 kg) 

NS BW 
 Increased BMI SDS∗ 3 years (450 ng/g

 group mean = 0.1 kg/m2 SDS,∗
63.7 ng/g group

 )‡‡ mean = −0.7 kg/m2 SDS∗
NS BW 

NS BMI 
NS BMI 

∗ NS rapid growth, NS BMI z score 

† Increased BW 6.5 years (β = 1.9 kg
between Q4 and Q1), increased

† BMI 6.5 years (β = 1.0 kg/m2

between Q4 and Q1), increased
overweight risk (RR = 1.7 per  log
ng/mL), increased obese risk
(RR = 2.0 per  log  ng/mL)
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Table 1. (Continued). 

Duration of
Chemical Age at Exposure (n) Design Follow-Up (Sex) Exposure Outcome 

HCB42 14–15 years (887) Cross-sectional 0 (M) 15.2–34.5 ng/g serum lipid Decreased BMI (β † = −0.7 kg/m2 

per doubled exposure)§§ 

HCB42 14–15 years (792) Cross-sectional 0 (F) 12.3–26.6 ng/g serum lipid Decreased BMI (β † = −0.6 kg/m2 

per doubled exposure)
βHCH59 First trimester (518) Prospective 14 months (M/F) Quartiles: 21.7, 32.2, 47.3 ng/g NS rapid growth 6 months old, NS

maternal serum lipid BMI z score∗ 14 months old 

Abbreviations: BMI, body mass index; BW, body weight; DDE, dichlorodiphenyldichloroethylene; DDT, dichlorodiphenyltrichloroethane; DL, dioxin-like; HCB,
hexachlorobenzene; HCH, hexachlorocyclohexane; IQR, interquartile range; NDL, non–dioxin-like; NS, not significant; OR, odds ratio; PCB, polychlorinated biphenyl;
PCDD, polychlorinated dibenzodioxin; PCDF, polychlorinated dibenzofuran; ppm, parts per million; RR, relative risk; SD, standard deviation; SDS, standard deviation
score; TEQ, toxic equivalents; WHR, waist-to-hip ratio.
∗ Descriptive statistic used to describe variability.38 

†Change in the outcome (eg, BMI, BW) per 1-unit change in the exposure.
‡PCB118 + PCB138 + PCB153 + PCB180; note PCB118 is a DL-PCB.
§Range of means across subgroups.
PCB118 + PCB138 + PCB153 + PCB170 + PCB180; note PCB118 is a DL-PCB.

¶PCB congeners not reported.
#Extrapolated.
∗∗ PCB138 + PCB153 + PCB180.
††Larger change in β in children with low exposure (below PCB median) compared with high exposure (above PCB median); above-median and below-median PCB

groups are both associated with decreased β.
 
‡‡Larger change in BMI SDS in children of smoking mothers compared with nonsmoking mothers.

§§Larger change in β in children with low exposure (below HCB median) compared with high exposure (above HCB median); above-median HCB group associated

with increased β and below-median HCB group associated with decreased β.
 

Larger change in β in children with low exposure (below median) compared with high exposure (above median); above-median and below-median HCB groups both
associated with decreased β. 
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the presence of DDT indicates a recent or current 
exposure and p,p ' - DDE tends to imply a long-term 
body burden. Hexachlorobenzene (HCB) and hex­
achlorocyclohexane (HCH, often called lindane) also 
have long half-lives. 

Of the 5 prospective studies of maternal expo­
sure to DDE, 4 found a positive association with 
measures of obesity in offspring (Table 1). A prospec­
tive study of 169 women in the Michigan fish-eater 
cohort (1973–1991) revealed that prenatal DDE expo­
sure was associated with significantly increased the 
BMI and body mass of adult daughters in a dose-
dependent manner.39 Further, as Belgian umbilical-
cord DDE increased, BMI SDS increased in 2- and 
3-year-old children; the effect of increasing DDE lev­
els on the BMI SDS was greater in children born to 
women who ever smoked compared with children 
of nonsmoking mothers.41 Transplacental exposure 
to DDE was associated with increased body weight 
of adolescent boys; however, this was not seen in 
girls.40 This was not seen in a population with higher 
DDT + DDE exposure levels, where summed DDT 
and DDE were not significantly associated with the 
BMI, tricep skinfold thickness, or central adiposity of 
adolescent boys.58 

A prospective study of 169 women 
in the Michigan fish-eater cohort 
(1973–1991) revealed that 
prenatal DDE exposure was 
associated with significantly 
increased the BMI and body mass 
of adult daughters in a 
dose-dependent manner. 

It was recently reported that the risk of rapid 
infant growth among infants born of women above 
the lower quartile of DDE exposure was 2.4× the 
risk of rapid growth in those born of women in 
the lowest quartile of DDE exposure (Table 1).59 

As was seen in the studies by Gladen et al., this 
effect may have been limited to children born of 
women with moderate DDE exposures because when 
prenatal DDE exposures exceeded 750 ng/g, no 
rapidly growing infants were observed.40,58,59 When 
the children of this study were 14 months old, the 
risk of elevated BMI z scores (another measure of 
variability, elevated defined here as ≥1.44) increased 
1.40 for each unit increase in log ng DDE/g lipid.59 

There are far fewer studies of prospective devel­
opmental exposures to HCB and HCH (Table 1). For 
instance, the association between cord-blood HCB 

levels and childhood obesity was consistent with a 
positive dose effect of HCB on body weight and 
BMI when children were 6.5 years old (Table 1).60 

Cord-blood HCB levels >0.46 ng HCB/mL were asso­
ciated with a 70% increase in the risk of being 
overweight and doubled the risk of being obese 
at age 6.5 years.60 

The only cross-sectional study of children and 
DDTs found a negative association between DDE 
and BMI in adolescents of both sexes (Table 1).42 

However, in the majority (5/6) of cross-sectional 
studies of adults, DDT and/or DDE exposures 

obesity.42,44,45,61–63 are associated with increased 
Similarly, serum HCB was associated with decreased 
BMI in adolescent boys and girls cross-sectionally.42 

The opposite trend was seen in adults from this same 
region of Belgium, where serum HCB levels in adult 
men and women were associated with increased BMI 
after adjustment for other environmental exposures.42 

There is surprisingly little evidence in the 
rodent literature to support the seeming relationship 
between perinatal organochlorine pesticides and off­
spring obesity. In utero exposure to HCB did not 
consistently affect the body weights of rats across 
their 100 days of life.64 Similarly, adult female rats 
exposed to HCB did not experience a change in body 
mass after 1 month.65,66 Mice prenatally exposed 
to 100 mg DDT/kg maternal body weight/day had 
higher body weights in the week after birth when 
the study ended.67 Male  rats  exposed to DDT  dur­
ing puberty had no change in body weights from 
puberty to 12 weeks of age when the study ended.68 

Likewise, female rat pups exposed to DDT through­
out their gestation and nursing had no change in 
body weights through 6 weeks old.69 None of these 
studies examined fat mass. They also did not observe 
animals through middle age, when obesity is more 
likely to be evidenced. 

There is surprisingly little evidence 
in the rodent literature to support 
the seeming relationship between 
perinatal organochlorine 
pesticides and offspring obesity. 
However, none of the relevant 
studies observed animals through 
middle age, when obesity is more 
likely to be evidenced. 

Despite largely null findings of developmental 
DDT effects on postnatal growth experimentally, 
one perinatal DDT study stands out in light of 
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recent obesity research. Rats prenatally exposed to 
50 mg DDT/kg body weight/day for 3 days had 
transient fetal growth restriction, yet birth weights 
were similar to control rats.70 When this same 
exposure paradigm was used across various postnatal 
windows, lactational transfer of DDTs also caused 
no change in offspring body mass.70 Although no 
changes in offspring liver weights were observed, late 
gestational or lactational exposure to DDT resulted in 
excessive and disorganized endoplasmic reticulum, 
as well as excess lipid droplets and a higher 
RNA/DNA ratio in hepatocytes as early as the day of 
birth.70 What is striking about this study is that nearly 
30 years later, it was discovered that endoplasmic 
reticulum stress, which can result from excess protein 
translation, is tightly coupled to obesity.71,72 

Adult primate research suggests that the associ­
ation between prenatal DDE and offspring obesity 
in humans may be due to effects of DDE on 
lipid metabolism. Rhesus monkeys exposed to DDT 
had decreased cholesterol and phospholipids in the 
brain, increased hepatic lipogenesis, increased hep­
atic triglycerides, as well as increased cholesterol and 
triglycerides in both serum and adipose.73,74 

Polyfluoroalkyls 
Perfluoroalkyls (PFOA) are surfactants that act 
through PPARα and PPARγ , and  perhaps other  
nuclear receptors.75,76 The PPARs are critical in the 
regulation of fat metabolism and storage, adipocyte 
differentiation, and insulin sensitivity.77 As has been 
observed in other cross-sectional studies of POPs 
reviewed here, perfluoroalkyls in adolescents are 
associated with lower waist circumference or have 
no association with either waist circumference or 
BMI, whereas perfluoroalkyls in adults are associ­
ated with increased BMI and waist circumference 

–80 (Table 2).78 Although the direction of causality 
cannot be inferred from cross-sectional studies, 
2 adult studies using retrospective BMI data with 
PFOA and PFOS in serum suggest that positive asso­
ciations between adiposity and PFOAs may reflect 
unique exposure of obese people to PFOAs and/or 
unique PBPK of PFOAs in obese people.81,82 

Despite the lack of prospective studies in 
humans of developmental exposure to PFOAs and 
offspring body mass and fat, mice exposed to PFOAs 
echo the theme seen with POPs reviewed above, 
where low developmental doses cause obesity and 
high doses do not. Mice exposed to low levels of 
PFOAs in utero had significantly increased body mass 
by 10 weeks old, which persisted through midlife.24 

Mice exposed to low levels of 
perfluoroalkyls in utero had 
significantly increased body mass 
by 10 weeks old, which persisted 
through midlife. 

When these mice were 18 months old, there was 
an inverse and direct dose-response relationship 
between in utero PFOA doses and abdominal white 
and brown adipose tissue masses, respectively.24 

However, mice exposed to high doses of PFOAs 
during gestation had decreased body mass.24,83,84 As 
to be expected from observations of adult human 
exposure to PFOAs, mice exposed to PFOAs as adults 
experienced no change in body mass or fat mass 
across PFOA doses and ages.24 

Polybrominated Diphenyl Ethers 
Many kinds of brominated flame retardants have been 
used in consumer products for the past 30+ years 
to provide fire safety. One of the major classes, the 
polybrominated diphenyl ethers (PBDEs), were used 
in many products in the US and either have been 
or are being voluntarily phased out, and they are 
banned in the European Union. Levels of PBDEs in 
children are 2–6× higher than those found in adults 
across the world.85–90 There are no known studies 
of developmental exposures to PBDEs and obesity in 
humans. As in other cross-sectional observations of 
POPs, women with high BMI have higher levels of 
PBDEs.91,92 

Experimental studies have linked developmental 
exposure to the commercial penta-PBDE mixture, 
or to congeners mainly present in that mixture, to 
changes in body weight, yet the direction of change 
is inconsistent and observation periods of most of the 

–studies are quite short.47,56,93 95 In the longest study 
of developmental PBDE exposure to look at body 
weights, male mice exposed to BDE47 (2,2 ' ,4,4 ' ­
tetraBDE) 10 days after birth had increased body 
weights from PND 47 until the end of the study, 
at 4 months of age.93 The effects of BDE47 were 
not as clean-cut in another study.95 When rats were 
exposed to 200 µg BDE47/kg body weight every 
5 days from GD 15 to PND 20, their offspring weighed 
more from birth to the end of the study at PND 47 
(when P = 0.06).95 Because these BDE47-exposed 
offspring were also consistently longer, their BMI 
was lower than controls on PND 15. In contrast, 
if  the same protocol  was  used  for 2  µg BDE47/kg 
body weight doses, offspring body weights and 
lengths did not differ from controls, but their BMIs 
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Table 2. Child and Adolescent Obesity and Exposures to Chemical Classes Containing PPAR Agonists Organized by Chemical Class with Ascending Ages per Chemical.

Chemical Age at Exposure (n) Design 
Duration of

Follow-Up (Sex) Exposure Outcome 

Perfluoroalkyls

PFOA78 

PFOA79 

PFOS78 

PFOS78 

PFOS79 

PFNA78 

PFNA79 

PFHxS78 

PFHxS79 

12
12
12

12

12
12
12
12
12

–
–
–

–

–
–
–
–
–

19 years (585) 
19 years (474) 
19 years (322) 

19 years (263) 

19 years (474) 
19 years (585) 
19 years (474) 
19 years (585) 
19 years (474) 

Cross-sectional 
Cross-sectional 
Cross-sectional 

Cross-sectional 

Cross-sectional 
Cross-sectional 
Cross-sectional 
Cross-sectional 
Cross-sectional 

0 (M/F) 
0 (M/F) 
0 (M) 

0 (F) 

0 (M/F) 
0 (M/F) 
0 (M/F) 
0 (M/F) 
0 (M/F) 

∗ 0.1–37.3 µg/L serum
1.5 ± 0.1 log ng/mL serum 

∗ 1.4–392.0 µg/L serum

∗ 1.4–392.0 µg/L serum

3.11 ± 0.05 log ng/mL serum 
∗ 0.1–10.3 µg/L serum

−0.3 ± 0.1 log ng/mL serum 
∗ 0.2–27.1 µg/L serum

0.9 ± 0.1 log ng/ml 

NS BMI, NS WC
Decreased WC (OR = 0.6 per  log ng/mL)
Decreased BMI (β † = −2.8 kg/m2 between Q4

and Q1), decreased WC (β † = −9.0 cm between
Q4 and Q1)

NS BMI, decreased WC (β † = −4.8 cm between
Q4 and Q1)

Decreased WC (OR = 0.4 per  log ng/mL)
NS BMI, NS WC
NS WC 
NS BMI, NS WC
Decreased WC (OR = 0.6 per  log ng/mL)  

Short-lived, but ubiquitous, pollutants

MEP99 

MEP98 

MEP98 

MEP98 

MECPP99 

MEHHP99 

MEHHP98 

MEHP99 

MEHP98 

MEHP98 

MEHP98 

MBzP99 

MBzP98 

MiBP99 

MCPP99 

MBP99 

6–9 years (90) 
6–11 years (656) 
12–19 years (662) 
12–19 years (682) 

6–9 years (90) 
6–9 years (90) 
6–19 years (1030) 
6–9 years (90) 
6–11 years (656) 
12–19 years (662) 
12–19 years (682) 

6–9 years (90) 
6–19 years (2000) 
6–9 years (90) 
6–9 years (90) 
6–9 years (90) 

Cross-sectional 
Cross-sectional 
Cross-sectional 
Cross-sectional 

Cross-sectional 
Cross-sectional 
Cross-sectional 
Cross-sectional 
Cross-sectional 
Cross-sectional 
Cross-sectional 

Cross-sectional 
Cross-sectional 
Cross-sectional 
Cross-sectional 
Cross-sectional 

0 (F) 
0 (M/F) 
0 (M) 
0 (F) 

0 (F) 
0 (F) 
0 (M/F) 
0 (F) 
0 (M/F) 
0 (M) 
0 (F) 

0 (F) 
0 (F) 
0 (F) 
0 (F) 
0 (F) 

5.3
0.6
0.6
5.9

5.9
1.4
0.7
0.6
0.6
0.7
0.7

0.1
0.2
0.2
0.4
0.3

–
–
–
–

–
–
–
–
–
–
–

–
–
–
–
–

2580.0 µg/L urine 
9043.6 µg/L urine 
12,359.0 µg/L urine 
39,631.7 µg/L urine 

2260.0 µg/L urine 
1699.0 µg/L urine 
2118.3 µg/L urine 
110.0 µg/L urine 
9043.6 µg/L urine 
273.4 µg/L urine 
549.2 µg/L urine 

191.0 µg/L urine 
1685.0 µg/L urine 
144.0 µg/L urine 
76.9 µg/L urine 
363.0 µg/L urine 

NS BMI 
NS BMI and WC
NS BMI, NS WC

† Increased BMI (β = 1.7 kg/m2 between Q4 and
† Q1), increased WC (β = 4.1 cm between Q4

and Q1) 
NS BMI 
NS BMI 
NS BMI, NS WC
NS BMI 
NS BMI, NS WC
NS BMI, NS WC
Decreased BMI (β † = −1.5 kg/m2 between Q4

and Q1), NS WC
NS BMI 
NS BMI, NS WC
NS BMI 
NS BMI 
NS BMI 
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Table 2. (Continued). 

Duration of
Chemical Age at Exposure (n) Design Follow-Up (Sex) Exposure Outcome 

MBP98 6–19 years (2000) Cross-sectional 0 (M/F)	 0.6–2595.3 µg/L urine NS BMI, NS WC
MEOHP99 6–9 years (90) Cross-sectional 0 (F)	 1.3–1070.0 µg/L urine NS BMI 
MEOHP98 6–19 years (2000) Cross-sectional 0 (M/F)	 0.8–1380.1 µg/L urine NS BMI, NS WC
BPA99 6–9 years (90) Cross-sectional 0 (F) <0.2–26,700.0 µg/L urine Decreased BMI (≥85th % tile group

mean = 41.8 µg/L, <85th % tile
group mean = 26.9 µg/L) 

Thiazolidinediones

‡ Pioglitazone163 14 ± 1.9 (35) Randomized controlled 6 months 15 mg orally daily for 3 weeks, Increased change in BMI z score
trial 30 mg daily thereafter if (pioglitazone group

‡ tolerated	 mean = 0.3 kg/m2 z score,
placebo group mean = 0.0 kg/m2 

z score‡) 
Rosiglitazone164 13.6 ± 1.6 SD (36) Randomized controlled 24 weeks each, with 4 mg orally twice daily NS BMI-SDS, NS WC, NS skinfolds 

crossover trial 4-week washout 

NOTE: Evidence is presented by chemical class with ascending ages per chemical.

Abbreviations: BMI, body mass index; BPA, bisphenol A; MBP, mono-n-butyl phthalate; MBzP, mono-benzyl phthalate; MCPP, mono(2-ethylhexyl)phthalate; MEHP,

mono-2-ethylhexyl phthalate; MEHHP, mono-2-ethyl-5-hydroxyhexyl phthalate; MEOHP, mono-2-ethyl-5-oxohexyl phthalate; MEP, monoethyl phthalate; MiBP, mono­
isolbutyl phthalate; MMP, monomethyl phthalate; NS, not significant; OR, odds ratio; PFHxS, perfluorohexane sulfonic acid; PFOA, perfluorooctanoic acid; PFOS,

perfluorooctane sulfate; PFNA, perfluorononanoic acid; PPAR, peroxisome proliferator activated receptor; SD, standard deviation; SDS, standard deviation score; WC,

waist circumference.

∗ Range includes adults.
†Change in the outcome (eg, BMI, BW) per 1-unit change in the exposure.
‡Descriptive statistic used to describe variability.38 
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were higher than those of controls at PND 5 and 
lower than those of controls at PND 15 and 25.95 

Kestrels, a bird of prey, exposed to a mixture 
of penta-PBDEs in ovo and during development 
weighed more, gained weight more quickly, and 
ate more as  nestlings.94 However, during the first 
3–4 weeks of life, body weights of mouse offspring 
were unaffected by maternal exposure to PBDE99 
(2,2 ' ,4,4 ' ,5-pentaBDE) (0.6, 6, or 30 mg/kg body 
weight/day GD 6–PND 21; or 1 or 10 mg/kg body 

18).47,56weight/day GD 10– These PBDE-induced 
growth changes might be linked to changes in lipid 
metabolism. For instance, developmental exposure 
to BDE47 increased cholesterol levels in shrimp, and 
exposure to a commercial penta-PBDE mixture in rats 
increased lipolysis in their isolated adipocytes.96,97 

Short-Lived, but Ubiquitous, Pollutants 

Phthalates 
Phthalates are used in plastics and fragrances and are 
known agonists of PPARα, PPARβ, and PPARγ .77 In 
adolescent girls of the 1999–2002 NHANES, BMI and 
waist circumference increases were associated with 
increasing urinary monoethyl phthalate (MEP) levels 
but BMI decreased in association with monoethyl­
hexyl phthalate (MEHP; Table 2).98 Other urinary 
phthalates detected in the 1999–2002 NHANES were 
not associated with these measures of adiposity in 
children or adolescents (Table 2).98 In a smaller cross-
sectional study of adolescent girls, urinary phthalates 
were not associated with BMI above the national 85th 
percentile (Table 2).99 However, in contrast to the 
trend seen with cross-sectional studies of POPs, cross-
sectional studies of phthalate metabolites in the urine 
of adults show that the metabolites are associated 
with increased waist circumference and BMI.98,100 

Cell-culture experiments support a potential role 
of developmental phthalate exposures in obesity. For 
instance, MEHP and dicyclohexyl phthalate induced 
adipogenesis in the adipocyte differentiation 3T3L1 

–cell-culture model.101 103 Unfortunately, there are no 
known in vivo studies of developmental phthalate 
exposure and body mass outcomes in animals, 
although adult rodents shed some light on the 
potential role of diethylhexyl phthalate (DEHP) in 
human obesity. In several studies, adult rodents 
exposed to DEHP did not increase in body and/or fat 
mass.77,104,105 Yet when mouse PPARα was replaced 
by humanized PPARα, DEHP increased fat mass in 
adult mice, suggesting that DEHP could increase fat 
mass in humans.77 

Bisphenol A 
Bisphenol A (BPA) is used in a variety of hard 
plastics, can linings, and thermal papers, and is a 
estrogen receptor agonist.106 BPA activates PPAR 
and its derivative, BPA diglycidyl ether, is the 
only known PPARγ antagonist and also acts as 
a PPARγ agonist.107 The only epidemiology study 
that examined the association of BPA and obesity 
in children used cross-sectional data on adolescent 
girls; being above the national 85th percentile of BMI 
for age and sex was associated with less BPA in urine 
(Table 2).99 A similar finding was reported in adults 
of the 2003–2004 NHANES.108 

Numerous rodent studies have reported on the 
effects of developmental exposures to BPA and body 
mass (Table 3). Readers are referred to recent reviews 
for discussion of the obesogenic properties of BPA 
in experimental models published prior to 2010; 
however, it should be noted here that differences 
between similar studies have been attributed to 
estrogenic contamination of feed, cages, and water 
bottles.8,109 Rodent BPA studies published in 2010, as 
well as in vitro studies, are described below. 

Mice exposed to low BPA levels from mid- to 
late- gestation had significantly increased body mass 
at birth and weaning, whereas mice exposed to 
relatively high (100 µg/kg body weight) BPA from 
mid to late gestation had significantly decreased 
body mass from birth through weaning.110 Thereafter, 
the body weights of male offspring exposed to 
BPA in utero did not differ from control mice 
until 6 months of age, when they were no longer 
followed. However, female mice exposed to either 
BPA dose weighed significantly less than control mice 
at 3 months of age.110 

In another study, pups from dams that ate 
food containing ecologically relevant levels of BPA 
weighed more at weaning. Male and female offspring 
had similar body weights as did controls from 
weaning to 9 weeks old when the study ended; 
however, females had lower fat mass compared with 
controls at 9 weeks.111 Rats exposed to BPA in utero 
experienced little effect of BPA on body weights 
through PND 72, although there were some transient 
decreases in body weights of males and females in the 
highest BPA dose groups.112 Adolescent male rats that 
were exposed to high doses of BPA had decreased 
body weights at the end of the BPA treatment period, 
when they were 10 weeks old.113 

In vitro studies support the influence of early 
life BPA exposure on obesity. For instance, when 
2-cell mouse embryos were exposed to 1 nM or 
3 nM BPA, the rate of development into blastocysts 
was accelerated, yet this rate was decreased when 2­
cell mouse embryos were exposed to 100 µM BPA.114 
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Table 3. Immature Rodent Exposures to Chemical Classes Containing PPAR Agonists and Obesity with Ascending Ages per Chemical.

Chemical Exposure Window 
Species
and Sex 

Duration of
Follow-Up Dose Outcome 

Perfluoroalkyls

PFOA24 

PFOA24 

PFOA84 

PFOA84 

PFOA83 

PFOA83 

PFOA24 

GD 1–17 

GD 1–17 

GD 7–17, GD 10–17, GD 
13–17, or GD 15–17 

GD 7–17, GD 10–17, GD 
13–17, or GD 15–17 

3–7 weeks 

3–7 weeks 

8–10.5 weeks 

Mus 

Mus 

Mus 

Mus 

Mus 

Mus 

Mus 

F 

F 

M 

F 

F 

F 

F 

18 months old 

18 months old 

35 weeks old 

35 weeks old 

7 weeks old 

7 weeks old 

18 months old 

 0.01, 0.1, or 0.3 mg/kg BW daily∗

 1, 3, or 5 mg/kg BW daily∗

 3, 5, 10, or 20 mg/kg BW daily∗

 3, 5, 10, or 20 mg/kg BW daily∗

10 mg/kg BW daily,
 5 days/week∗

1 or 5 mg/kg BW daily,
 5 days/week∗

0.01, 0.1, 0.3, 1, 3, or 5 mg/kg
 BW daily∗

Increased BW 20–37 weeks old,†

increased WAT 18 months old,
decreased BAT 18 months old

Decreased BW various ages,
decreased WAT 18 months old,
increased BAT 18 months old

Decreased BW through PND 71

Decreased BW until weaning,
increased BW 23 weeks and older
if exposed GD 13–17

Decreased BW 7 weeks

NS BW 

NS BW, NS WAT, NS BAT 

Short-lived, but ubiquitous, pollutants

BPA109 

BPA115 

BPA111 

BPA112 

BPA112 

BPA112 

BPA112 

BPA112 

BPA110 

1 week pre-
conception–weaning 

Preimplanted embryos 
GD 0–PND 21§ 

GD 0–PND 21§ 

GD 0–PND 21§ 

GD 0–PND 21§ 

GD 0–PND 21§ 

GD 0–PND 21§ 

GD 3–PND 21§ 

Mus M  

Mus M/F 
Mus M/F 

Rattus M 
Rattus M 
Rattus F 
Rattus M 

Rattus F 

Mus M/F 

PND 28  

PND 21§ 

14 weeks old 

PND 21 
PND 72 
PND 72 
PND 72 

PND 72 

PND 21 

5 or 10  µg/ml‡ ∼= 1.2 mg total 

�1 nM or 100 µM 
1 µg/kg¶# ∼= 0.25 µg/kg BW 

¶ 0.15 ppm
¶ 1.5 ppm

¶ 0.15, 1.5, or 75 ppm
¶ 75, 750, or 2250 ppm

¶ 750 or 2250 ppm

2 or 200 µg/kg BW/day¶ 

NS BW 

Increased BW PND 21
Increased BW 3 weeks; NS BW

4–14 weeks; decreased fat if fed
HFD 14 weeks

Increased BW PND 21
NS BW 
NS BW 
Decreased BW various days PND

4–21 
Decreased BW various days PND

4–21 
NS BW 

3
4
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Table 3. (Continued). 

Chemical Exposure Window 
Species
and Sex 

Duration of
Follow-Up Dose Outcome 

BPA110 

BPA110 

BPA110 

BPA185 

BPA150 

BPA150 

BPA150 

BPA150 

BPA146 

BPA186 

BPA146 

BPA147 

BPA146 

BPA187 

BPA149 

BPA188 

BPA188 

BPA189 

BPA186 

BPA113 

BPA113 

GD 9–16 

GD 9–16 
GD 9–16 
GD 9–20 (partuition) 
GD 10–PND 30 
GD 10–PND 30 
GD 10–PND 30 
GD 10–PND 30 
GD 11–17 
GD 11–17 
GD 11–17 
GD 11–17 
GD 11–17 
GD 12–PND 21§ 

GD 15–19 
GD 21–PND 21§ 

GD 21–PND 21§ 

PND 5 
PND 21–90 
4–10 weeks 
4–10 weeks 

Mus M 

Mus M 
Mus F 
Mus F 
Mus M  
Mus M/F 
Mus F  
Mus F 
Mus M  
Mus M/F 
Mus F  
Mus F 
Mus M 
Rattus M 
Mus 
Rattus F 
Rattus M 
Rattus M 
Rattus M 
Rattus M 
Rattus M 

6 months old 

6 months old 
6 months old 
12 months old 
PND  31  
PND 31 
PND  31  
PND 31 
PND  60  
PND 22§ 

PND 60  
PND 310 
PND 60 
PND 90 
16 weeks old 
16 months old 
3 months old 
8 weeks old 
PND 90 
10 weeks old 
10 weeks old 

 10 µg/kg BW∗∗

 100 µg/kg BW∗∗
 10 or 100 µg/kg BW∗∗

25 or 250 µg/kg BW†† 

1  µg/mL‡  0.26 mg/kg BW 
10 µg/mL‡  2.72 mg/kg BW 
1  µg/mL‡  0.26 mg/kg BW 
10 µg/mL‡  2.72 mg/kg BW 

 2  µg/kg BW∗∗
 2.4 µg/kg BW∗

 2 or 20  µg/kg BW∗∗
 2 or 20 µg/kg BW∗

 20 µg/kg BW∗∗
 2.4 µg/kg BW∗

 0.5 or 10 mg/kg BW∗∗
1 or 10 mg/L‡  0.1 or 1.2 mg/kg BW 
1 or 10 mg/L‡  0.1 or 1.2 mg/kg BW 
0.02, 0.2, 2, or 20 µg total‡‡ 

 2.4 µg/kg BW∗
 20 mg/kg BW∗∗

 100 or 200 mg/kg BW∗∗

Increased BW birth, increased BW
weaning 

Decreased BW birth–weaning 
Decreased BW 3–6 months old
Increased BW 9 months old
NS BW, NS WAT PND 31
Increased BW, increased WAT PND 31
Increased BW, increased WAT PND 31
Increased BW PND 31
NS BW 
Increased BW PND 22
Decreased BW various days
NW BW 
Decreased BW various days
Increased BW PND 90
Increased BW
Increased BW various days
Increased BW various days
NS BW 
NS BW 
NS BW 
Decreased BW 10 weeks

Metals

TBT123 

TBT122 

TBT69 

TBT120 

TBT120 

TBT121 

TBT121 

TBT119 

TBT125 

TBT125 

‘‘Pregnancy’’–PND 21§ 

GD 0–PND 21§ 

GD 0–PND 21§ 

GD 4–PND 21§ 

GD 4–PND 21§ 

GD 6–17 
GD 6–17 
GD 12–18 
PND 24–45 
PND 24–45 

Mus M 
Rattus F 
Rattus F 
Rattus M/F 
Rattus M/F 
Mus M/F 
Mus M/F 
Mus M/F 
Mus M 
Mus M 

PND 21 
15 weeks old 
6 weeks old 
PND 23 
PND 23 
PND 55 
PND 55 
10 weeks old 
PND 84 
PND 84 

‡ 15 or 50 ppm
¶§§ 125 ppm

¶ 25 µg TBT/g
 6 mg/kg BW∗
 2 mg/kg BW∗

 7.5 mg/kg BW∗
 15 mg/kg BW∗

��0.05 or 0.5 mg/kg BW 
 0.05 mg/kg BW every 3 days∗

 0.5 mg/kg BW every 3 days∗

Decreased BW PND 7
Decreased BW 9–15 weeks 
Decreased BW PND 28 and 6 weeks
Decreased BW PND 1–2
NS BW 
NS BW 
Decreased BW PND 1
NS BW, increased WAT 10 weeks
Increased BW PND 56–84 
NS BW 
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Table 3. (Continued). 

Species Duration of
Chemical Exposure Window and Sex Follow-Up Dose Outcome 

TBT126 ‘‘After quarantine’’ Mus M 45 days after treatment 0.5 or 50 µg/kg BW every 3 days∗ NS BW, NS fat mass 
(began PND 21)– 
45 days later 

TBT126 ‘‘After quarantine’’ Mus M 45 days after treatment 5 µg/kg BW every 3 days∗ Increased BW gain, increased fat
(began PND 21)– mass 
45 days later 

TBT68 6–12 weeks Rattus M 12 weeks old 0.04 ng/g¶ Increased BW 8–12 weeks 
TBT122 9–15 weeks Rattus F 15 weeks old 125 ppm diet¶§§ Decreased BW 9–15 weeks 

Thiazolidinediones

Pioglitazone165 7–12.5 weeks Rattus M 12.5 weeks old 12 mg/kg BW∗ Increased BW 7.5–12.5 weeks 
Pioglitazone165 10.5–15 weeks Rattus M 15 weeks old 12 mg/kg BW∗ Increased BW 12–15 weeks 
Rosiglitazone166 PND 21–60 Rattus F PND 60 11 µmol¶ Increased WAT PND 60, increased

BAT PND 60
Englitazone168 GD 16–21 Rattus M/F PND 0 50 mg/kg BW∗ Decreased BW PND 0 

NOTE: Evidence is presented by chemical class with ascending ages and doses per chemical.

Abbreviations: BAT, brown adipose tissue; BMI, body mass index; BPA, bisphenol A; BW, body weight; GD, gestation day; HFD, high fat diet; NS, not significant; OR,

odds ratio; PFOA, perfluorooctanoic acid; PND, postnatal day; PPAR, peroxisome proliferator activated receptor; ppm, parts per million; TBT, tributyltin; WAT, white

adipose tissue; WC, waist circumference.

∗ Oral gavage.
†Last measurement of study.
‡Water. 
§Weaning.
In vitro.

¶Diet. 
#Dams ate more diet when it contained BPA PND 14–21. 
∗∗ Subcutaneous.
††Osmotic pump.
‡‡Intracisternal.
§§Dams ate less diet when it contained TBT.

Intraperitoneal. 
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Further, when 2-cell mouse embryos were exposed 
to either 1 nM or 100 µM BPA, they were heavier 
than controls at weaning (end of study).115 In another 
series of experiments, BPA induced the differentiation 
of 3T3-L1 fibroblasts into adipocytes.103,116,117 

Metals 

Organotins 
Organotins are used in plasticizers, slimicides, 
fungicides, antifoulants, catalysts, and stabilizers.9 

Though organotins are found in humans, there are no 
known studies of their relationship with body mass 
or adiposity in humans to date.9 The experimental 
evidence for tributyltin (TBT) and triphenyltin (TPT) 
as potential obesogens has been reviewed recently, 
and readers are referred to that review for additional 
discussion of organotins research.9 

TBT and TPT are retinoid X receptor and PPARγ 
agonists.118,119 Acute prenatal and postnatal exposure 
to TBT (sufficient to increase mortality) decreases 

–122postpubertal growth in mice (Table 3).120 At 
lower doses, prenatal TBT exposure appears to have 
little to no impact on body mass while increasing 
adipose mass. Peripubertal exposure to TBT seems 
to increase the likelihood of increases in both body 
and fat mass. 

Neonatal mice exposed to TBT in utero had 
greater Oil Red O staining (indicative of lipid 
droplets) in their livers, testis, and adipose tissues.119 

After cross-fostering with untreated lactating mice, 
these mice had similar body masses, but males 
exposed to TBT  in utero had 20% increased adi­
pose mass over controls in adulthood (Table 3).119 

Similar TBT exposure levels in utero decreased body 
weights of male mouse pups in the first week after 
birth, but not in the second or third weeks after 
birth (Table 3).123 Likewise, female rat pups exposed 
to TBT throughout their gestation and nursing had 
significantly reduced body weights at 4 and 6 weeks 
old (Table 3).69 Unfortunately, these later 2 studies 
did not evaluate fat mass or monitor the rodents into 
adulthood.69,123 

In another set of experiments where mice were 
exposed to TBT  in utero, more of their multipotent 
stem cells differentiated into adipocytes when 
collected from adult mice compared with similarly 
collected ex vivo cells from vehicle-treated mice.124 

This resulted in a greater lipid accumulation within 
stem cells-turned-adipocytes that were from mice 
prenatally exposed to TBT compared with vehicle-
treated mice.124 Further, the stem cells from mice 
exposed to TBT  in utero had a greater propensity 
to become lipid-filled adipocytes when exposed 
to more TBT or the diabetes drug rosiglitizone, 

another PPARγ agonist. This increased adipogenic 
capacity may have resulted in a TBT-induced shift 
in cell population; prior to experimentally induced 
differentiation of adipocytes, there were 6% more 
preadipocytes detected among ex vivo cells from 
mice prenatally exposed to TBT compared with mice 
exposed to vehicle.124 Tributyltin also appears to 
act as a developmental obesogen at lower doses 
in nonmammal animal models; it caused a dose-
dependent increase in ectopic adipocyte formation 
around the gonads of male and female Xenopus that 
were exposed as tadpoles.119 

Male mice exposed to TBT during puberty 
had increased body mass, associated with increased 
relative fat mass (Table 3).125,126 Similar observations 
were also seen in male rats (Table 3).68 In rats 
exposed to TBT  in utero through adulthood, the 
trend of body mass and fat is less consistent than seen 
in other TBT developmental exposure studies; male 
rats had a small decrease in body mass, whereas 2 
other studies found opposite effects of TBT exposure 
on the body weights of female rats.127 

Cell-culture models support a role of devel­
opmental exposure to organotins in obesity. TBT 
also induces adipogenesis through PPARγ in mul­
tipotent stem cells of mice and humans.124 Both 
TBT and TPT induce differentiation of 3T3-L1 
adipocytes.103,118,119,128 

Lead 
Lead poisoning is associated with developmental 
neurotoxicity. There is some evidence that lead 
exposure may also influence the risk of obesity, 
but most human studies do not support a positive 
association between developmental lead exposure 
and obesity. Lead levels in the teeth of male and 
female children (mean age 7.4 years) in the US were 
positively associated with their BMI measured at the 
same time.129 These childhood dentin lead levels 
increased as BMI increased from the beginning of 
the study period to BMI in young adulthood (mean 
age 20.5 years).129 However, the lead levels in patella 
and in tibia, which reflect recent lead exposure and 
long-term cumulative lead exposure, respectively, of 
these first-grade and second-grade children (mean 
age 7.4 years) were not associated with change 
in BMI measured in young adults.129,130 A cross-
sectional study found no association between blood 
lead levels and obesity in 11-year-olds,131 which are 
not associated in adult women either.132 Another 
study of adults showed a marginally significant 
inverse dose-response relationship between age-
adjusted patella lead levels, which reflect recent 
exposures, during adulthood and abdominal obesity 
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(P = 0.07).130,133 Animal research is consistent with 
an early-life susceptibility to lead-associated adiposity 
and suggests there is an effect of gender: gestational 
exposure to lead increased the body mass of male 
but not female middle-aged mice.134 

Air Pollution: Cigarette Smoke and 
Diesel Exhaust 

Prenatal maternal smoking is associated with 
increased occurrence of overweight among children 
and early adolescents.21,135 There is also evidence 
that prenatal maternal smoking increases the odds 
of obesity in children.136 The BMI SDS of toddlers 
was also associated with ever smoking among their 
mothers.41 In another study, prenatal maternal smok­
ing was not associated with adiposity measured by 
magnetic resonance imaging during early adoles­
cence in males and females.137 However, during late 
puberty, adolescents exposed to maternal prenatal 
smoking had 26% and 33% higher subcutaneous and 
intra-abdominal fat, respectively, than did their unex­
posed peers.137 These results were independent of 
sex, age, and height.137 Parental smoking was also 
associated with increased overweight and obesity 
among their children in a cross-sectional study.135 

During late puberty, adolescents 
exposed to maternal prenatal 
smoking had 26% and 33% higher 
subcutaneous and 
intra-abdominal fat, respectively, 
than did their unexposed peers. 

When mice were exposed to cigarette smoke 
while pregnant, the influence of the cigarette smoke 
on the body weights of their offspring was gender-
dependent and diet-dependent.138,139 Adult female 
offspring fed a normal diet had significantly increased 
body weights if exposed to cigarette smoke in utero 
compared with unexposed females, but cigarette 
smoke did not impact body weights of females 
fed a high fat diet for 2 weeks.138 Adult male off­
spring exposed to cigarette smoke in utero had a 
higher body weight than control-treated males if fed 
a high fat diet, but there was no cigarette-smoking 
effect on male body weight if males ate a normal 
diet.138 Male rats exposed to nicotine in utero had 
significantly increased body mass and white adipose 
tissue mass at weaning and through adulthood.139 

There was also evidence of adipocyte hypertrophy 
in the white adipose tissue mass at weaning. In utero 
nicotine exposure did not change food intake or 
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energy expenditure. However, nicotine exposure was 
associated with higher food efficiency (food intake 
relative to body weight increase), decreased physical 
activity, decreased brown adipose tissue mass, and 
decreased thermogenesis.139 None of these in utero 
nicotine effects were evident in female offspring.139 

Adult male (females not tested) mice exposed to 
the cigarette smoke and diesel exhaust constituent 
benzo[a]pyrene had increased body weights and 
weight gain compared with unexposed mice.140 In 
another study, the longer that adult male rats were 
exposed to diesel exhaust, the greater the increase 
in their body weights.141 These effects have not been 
reproduced in cell culture, where differentiation of 
3T3-L1 preadipocytes, as well as their lipid accumu­
lation, was decreased dose-dependently up to the 
equivalent exposure to 1 pack of cigarettes.142 

Pharmaceuticals 

Diethylstilbestrol 
Diethylstilbestrol (DES) is a synthetic estrogen. Much 
of the evidence for DES as an obesogen has been 
produced in 1 laboratory.143 Female mice exposed to 
1 µg DES/kg body weight/day during PND 1–5 had 
increased body weight and fat mass as adults.144 This 
was not seen in males under the same conditions. 
Mice exposed to 1 mg DES/kg body weight/day 
during PND 1–5 lost weight during treatment, but 
as a result of rapid compensatory growth during 
peripuberty, also had increased body weight and 
fat mass as adults. The increased body mass due 
to neonatal DES exposure persisted throughout 
adulthood but was no longer statistically significant 
when mice were 18 months old.143 

Shorter studies of perinatal DES exposure have 
found increased, decreased, or no change in body 
masses of rodents in doses ranging from 0.02 to 10 µg 
DES/kg body weight/day and found consistently 
decreased body mass at 200 µg DES/kg body 
weight/day. Offspring exposed to 0.2 µg DES/kg  
maternal body weight/day GD 11–17 had increased 
body mass during the first week of life in one study 
but not another.67,145 However, in other studies, 
maternal exposure to 0.02 or 0.2 µg DES/kg body 
weight during the same prenatal window decreased 
body weights of male and female offspring at various 
ages until PND 60 (measurements stopped).146,147 

Later prenatal (GD 16–18) exposure to 0.1 µg 
DES/kg body weight had no impact on offspring 
at day 21 or 60.148 Male mice exposed to about 
1 µg DES/kg body weight daily from conception to 
weaning had lower body and fat mass than did 
controls, whereas their female littermates had lower 
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fat mass compared with controls (monitored until 
14 weeks old).111 Maternal exposure to 2 µg DES/kg  
body weight prenatally increased birth weights 
of female neonates and had no impact on the 
body mass of female or male offspring thereafter 
(monitored until 60 days old).146 Yet female mice 
whose mothers were exposed to 10 µg DES/kg  
weight daily during late gestation had increased 
body weights through 16 weeks of age when 
the study ended.149 Offspring exposed to 200 µg 
DES/kg maternal body weight/day during either 
GD 11–17 or GD 16–18 had decreased body mass 
as neonates and at PND 60, respectively.67,148 Some 
of the apparent inconsistencies in DES effects have 
been previously attributed to feeding a diet with 
estrogenic properties to both controls and DES-
treated animals.109,150 

Antipsychotics 
The number of office visits made by children 
and adolescents that included antipsychotic drug 
treatment increased 6-fold from 1993 to 2002; >90% 
of these prescriptions are atypical antipsychotics 
(AAPs).151 Atypical antipsychotics are associated with 
increased body weight and waist circumference, and 
children and adolescents have a higher risk than 

–154do adults in developing these adverse effects.152

According to a Medicaid database review, children 
utilizing AAP therapy had more than double the odds 
of being diagnosed with obesity.155 In a prospective 
study of children, all 4 AAP treatments examined 
were significantly associated with increased body 
weight, fat mass, BMI, and waist circumference.156 

For instance, in only 12 weeks, the mean increase in 
fat mass of children taking aripiprazole, olanzapine, 
quetiapine, and risperidone was highly significant, 
at 2.4, 4.1, 2.8, and 2.4 kg, respectively, whereas 
the change in fat mass of untreated children was 
a mere 0.4  kg.156 Olanzapine was also associated 
with the greatest gain in body weight, BMI, and 
waist circumference.156 Olanzapine and risperidone 

In only 12 weeks, the mean 
increase in fat mass of children 
taking aripiprazole, olanzapine, 
quetiapine, and risperidone was 
highly significant, at 2.4, 4.1, 2.8, 
and 2.4 kg, respectively, whereas 
the change in fat mass of 
untreated children was a mere 
0.4 kg. 

were associated with extreme weight gain in >90% 
and >40% of adolescents, respectively, in a small 
12-week study.154 

Surprisingly few studies of AAP effects on 
adiposity in immature rodents exist. Lactational 
exposure to olanzapine increased body mass and 
increased waist-to-hip ratios in male and female 
mouse offspring during the third and fourth weeks of 
life (end of study).157 Similarly, both male and female 
mice exposed to risperidone via lactation had higher 
waist-to-hip ratios.157 Yet only female mice exposed  
to risperidone had increased body mass during 
the fourth week of life.157 Rats exposed to either 
olanzapine, risperidone, sulpiride, or haloperidol 
during puberty had significantly increased body 
weights and percent intra-abdominal fat.158 However, 
pubertal exposure to ziprasidone did not cause 
these effects.158 The adult rodent literature on the 
association between AAPs and weight gain has been 
recently reviewed.159 

Thiazolidinediones 
Thiazolidinediones (TZDs), eg, rosiglitazone, trogli­
tazone, and pioglitazone, are PPARγ agonists used 
to treat type 2 diabetes. They decrease insulin resis­
tance, circulating triglycerides, and free fatty acids.160 

Paradoxically, the PPARγ –agonist activity of TZD is 
also associated with increased body-weight gain in 
clinical trials of adults.161,162 Few clinical trials of 
TZDs exist in children. In one clinical trial, pioglita­
zone increased BMI SDS in adolescents with type 1 
diabetes (Table 1).163 Another clinical trial reported 
that rosiglitazone treatment did not alter the BMI 
SDS, waist circumference, or skin folds of adolescents 
(Table 1).164 

Animal studies favor a positive association 
between TZDs and obesity. Body-weight gain was 
substantially greater in rats that were exposed to 
pioglitazone in late puberty compared with unex­
posed rats.165 Pioglitazone exposures beginning in 
late puberty nearly doubled fat-pad weight in these 
rats, while causing a more modest increase in fat-pad 
mass in older rats.165 These effects on adiposity may 
have been mediated by increased food intake among 
rats exposed to pioglitazone.165 Similarly, puber­
tal exposure to rosiglitazone increased brown and 
white adipose tissue mass of rats.166 Adult chickens 
exposed to troglitazone also had increased fat mass; 
however, when the troglitazone exposure was con­
fined to their first day of life, they had significantly 
less fat-pad mass and ate less at 1 and 2 months 
of age.167 Consistent with this developmental find­
ing, rats exposed to englitazone during late gestation 
gave  birth to smaller pups.168 
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DISCUSSION implications for childhood obesogen research in par­
ticular. The total number of adipocytes increases 

Research on developmental obesogens is in its 
infancy, with the majority of developmental obesogen 
research reviewed here having been published within 
the last decade. There likely are other chemicals in 
the environment that increase risk of obesity and 
have yet to be recognized. These obesogens will be 
discovered among the tens of thousands of new syn­
thetic chemicals invented and produced in the past 
half century. The majority of these materials have not 
been tested for toxicity despite public health interven­
tions to reduce exposures to known toxic substances. 

How else can developmental obesogens be iden­
tified, given the inherent budget and time limitations 
relative to the abundant numbers of chemicals in 
manufacturing, commerce, and waste streams? While 
the field of research on the chemical origins of child­
hood obesity is in its infancy, tools exist to strengthen 
its depth and breadth. Pre-existing literature and cell 
culture assays can serve as in silico and in vitro obe­
sogen screens, respectively. Whole rodent studies can 
seek to validate screens with an emphasis on mech­
anism of action and phenotypic anchoring to human 
studies. Human studies are the best method to con­
firm the relevance of developmental obesogens to 
human populations. Specific research directions for 
each of these fields are enumerated below. 

Future Research Directions 

Experimental Research 
In silico and in vitro screening. 1) Existing phar­
maceutical research may be an excellent in silico 
screen. Pharmaceuticals are frequently studied in 
randomized controlled trials, a ‘‘gold standard’’ epi­
demiology study design that is infrequently employed 
in studies of environmental chemicals due to eth­
ical concerns. Obesogen researchers should be in 
the habit of reviewing published randomized con­
trolled trials for evidence of obesity as a side effect. 
This review identifies a number of anti-psychotic and 
anti-diabetic drugs that are associated with increased 
obesity in children and adolescents, and in most 
cases the molecular mechanisms of these drugs are 
understood, even if the exact reason for the obesity 

–side- effects are unknown.152,169 171 Many chemicals 
are already known to influence people through the 
same pathways on which these drug classes act. 
These candidate obesogens should be prioritized for 
obesity research. 

2) The use of adipocyte differentiation as a cell 
culture model to identify obesogens has important 

during development. However, the number of 
adipocytes in an adult are approximately constant 
whether they are lean or obese; significant weight 
gain or loss in adults is not accompanied by respec­
tive increases or decreases in adipocyte numbers, 
instead adipocyte size is correlated to adult adiposity 
(for further discussion see recent reviews53,54). These 
observations support the notion that the number of 
adipocytes a person will have is determined primar­
ily during childhood. If the total body fat mass is 
a function of # adipocytes × adipocyte size, any 
chemical that increases adipocyte numbers in devel­
oping organisms has the potential to greatly increase 
the total body fat mass during maturity. Given the 
relevance of differentiation of adipocytes in child­
hood obesity, cellular screens of compounds that 
cause differentiation of multi-potent human stem 
cells or 3T3-L1 cells at environmentally relevant con­
centrations would be helpful to prioritize in vivo 
characterization of obesogens. 

3) Cell based screens to identify new chem­
icals that act on candidate obesogenic receptors 
identified with in silico screens, such as the PPAR 
receptors, are also available to help identify can­
didate obesogens.106 Because a substantial breadth 
of developmental obesogen evidence presented here 
relates to chemicals associated with PPAR binding 
and/or expression, in vitro screens that determine 
PPAR binding and expression by environmentally 
relevant levels of candidate obesogens would likely 
be useful to identify chemicals to be used for in 
vivo obesogen research. Such a screen could evalu­
ate whether a cumulative addition model of additivity 
would be useful in testing mixtures of PPAR ligands 
in a modified version of the TEQ model of additivity, 
the PPAR equivalence (PPAREQ) model. 

In vivo validation. Candidate obesogens that 
have been identified through in silico and/or in vitro 
research should be carefully selected for in vivo 
experimental research to 1) examine mechanisms of 
obesogens while 2) striving to employ experimental 
designs that will be relevant to human studies. 

1) Obesogen experimentalists should use whole 
animals, or at least validate their cell culture models 
in vivo, for mechanistic research because metabolism 
is a multi-organ dynamic process. For instance, lipid 
homeostasis involves constant interaction between 
adipose tissue, liver, muscle, and the hypothalamus 
(Figure 1). All these tissues are potential targets 
of metabolic perturbation. Obesogens must be 
identified by examining energy balance because 
only a change in energy balance can change body 
mass. ‘‘Energy in’’ is burned, stored, or excreted and 
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mechanism of action studies should seek to evaluate 
these aspects of energy balance. Caloric intake should 
be quantified and controlled if divergent across 
treatment groups. If a change in body mass cannot 
be accounted for by a change in caloric intake, lipid 
and carbohydrate homeostasis should be dynamically 
tested and metabolic chamber experiments should 
identify activity, body temperature, and caloric 
content of feces. These tests would ideally occur 
before animals reach a state of obesity in order 
to identify initiating metabolic defects leading to 
obesity. Positive, as well as negative, controls should 
be included to be sure that the experiment has the 
power to detect a response. 

2) Whole animal studies also need to be 
designed with human exposure studies in mind. 
Chemicals should be administered in environmen­
tally relevant doses according to the route of human 
exposure, or as closely as possible. In deciding how 
to model exposure to ingested chemicals, the stress of 
oral gavage ought to be weighed against the potential 
drawbacks of mixing the exposure into food, such as 
potential confounding by changes in appetite. Finally, 
administered doses as well as internal measures of tis­
sue dose, often whole blood- and serum- levels, must 
be reported to facilitate comparison with humans. 
For certain rapidly eliminated compounds, urinary 
concentrations may be appropriate to measure for 
animal/human comparisons. Phenotypically anchor­
ing animal studies to human studies by measuring 
animal phenotypes that are relevant and measurable 
in humans will ultimately provide an opportunity to 
corroborate obesogen data across species. This does 
not mean it is sufficient to only measure body weight 
of animals, as some chemicals increase fat mass with­
out changing body mass. Adipose tissue mass and 
distribution should be measured both in vivo using 
MRI and at study termination, which should extend 
past young adulthood. 

Human research 
Epidemiologic research In order to strengthen 
the hypothesis that certain chemicals contribute to the 
risk of obesity, one would ideally want epidemiology 
studies that are designed with consideration of 1) PK 
and 2) non-linear dose-response. 

1) If obesity modifies the PK of lipophilic chem­
icals, the direction of causal association between 
obesity and chemicals may be particularly unclear 
in cross-sectional studies. Ideal obesogen studies 
would be prospective longitudinal studies with clear 
separation between chemical exposure assessment 
and obese case ascertainment in order to delineate 
the causal direction of their association. Whenever 

possible, exposures should be measured in utero 
and in infancy, because this period of metabolic pro­
gramming appears to be the most environmentally 
sensitive window for setting the lifetime metabolic 
trajectory. Although peripubertal exposure to either 
BPA or PFOA did not produce an obese phenotype 
in rodent studies reviewed here, it is noteworthy that 
half of the peripubertal TBT rodent studies and all 
of the peripubertal TZD rodent studies resulted in 
an obese phenotype (Table 3). Epidemiologists with 
peripubertal biological samples may wish to test the 
obesogen hypothesis also. Further, attempts should 
be made to quantify the odds or risk of an association 
between a chemical and obesity due only to the PK 
effects of obesity. This would allow epidemiologists 
to identify how strong an association between chem­
icals and obesity must be in order to be greater than 
the PK effect size. Such efforts will help dismiss the 
conclusion that the association between a chemical 
and obesity is merely an artifact of obesity’s influence 
on the chemical’s PK behavior. 

2) Many of the research examples presented 
here demonstrate non-linear dose response between 
chemicals and body mass and/or adiposity. If 
chemicals are banned and/or human exposure levels 
are declining in some populations, it would be 
desirable to have exposures measured in samples 
collected prior to the time at which chemicals were 
banned and/or when human exposure levels peaked, 
in order to better understand the shape of the dose 
response curve. Such efforts will be critical in accurate 
assessment of risk across various populations with 
differing ‘‘background’’ levels of these chemicals. For 
instance, DDE and DDT levels are quite low in the 
general US population yet DDT and DDE levels are 
relatively high in populations where DDT is still used 
or was recently in use.172 Similarly, PBDEs are in 
various stages of being phased out in the US and 
Europe but the highest exposure levels are seen in 
children living and working in electronic waste sites 
in other regions.86,90 

Clinical research The most efficacious focus 
of clinical researchers interested in developmental 
obesogens is to 1) monitor obesity as a side- effect 
of prescribed medications, and 2) to make use of 
long-term relationships with pediatric patients. 

1) Pediatricians have the opportunity to observe 
whether prescribed medications are associated with 
increased weight gain and excess change in growth 
trajectories. Converting the body weights of children 
into age- and sex- matched percentiles of stan­
dardized growth can greatly facilitate this endeavor. 
Careful observation of weight gain as a side- effect is 
particularly critical because there are conditions for 
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which few or no therapeutic clinical trials have been 
conducted in pediatric populations. Excess weight 
gain resulting from these off- label uses may be 
under-reported, thus pediatricians are encouraged to 
publish case- reports of such observations. 

2) The possible effect of chemicals on the 
metabolic programming of obesity is great, yet 
there are very few studies of chemical exposures 
during prenatal and perinatal development which 
provide the information needed to assess later 
obesity due to the potentially long latency before 
obesity is evidenced. Given this, pediatricians are 
advised to obtain a brief history of occupational 
and environmental exposure from every patient and 
parent. If this initial screen raises suspicion of a child’s 
exposure to a chemical that may be an obesogen 
or otherwise influence development, more detailed 
follow-up questions should be asked or consultation 
sought with a specialist in occupational and 
environmental medicine. Although many chemicals 
reviewed here are widely dispersed, the clinician 
is reminded when treating patients living or once 
living in malarial areas that the World Health 
Organization endorses indoor DDT spraying for 
malaria vector control.172 While outside the scope 
of this review, the clinician is also alerted that 
the dysfunctional metabolic, immune, endocrine, 
and reproductive systems of obese children may 
also reduce their capacity to defend against toxic 
insults.49,105,133,139,173–176 Thus the clinician must also 
seek to identify exposures that cause adverse effects 
in obese children that are not seen in lean children, 
in addition to seeking to identify obesogens. 

Closing remarks 

Although the epidemiologic data on developmental 
obesogens are not yet clear, animal studies indi­
cate that developmental obesogens do exist and 
numerous chemicals that are candidate obesogens 
are identified here. While no study could be expected 
to singly address all of our recommended research 
directions, prospective longitudinal cohorts are a 
powerful approach to obesogens research and would 
lead to translational studies that integrated some 
of our epidemiologic research suggestions with our 
experimental research suggestions. 

An emerging unifying theme of obesogen effects 
reviewed here is the evidence of non-linear effects on 
body weight and adiposity. Specifically, many chem­
icals caused cachexia at high doses, but increased 
body mass and/or adipose mass at doses closer to 
the exposure range seen in humans. Historically, 
bench toxicology research has employed doses of 
substances log folds higher than observed human 
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exposures in order to detect mortality and severe 
morbidities, e.g. cachexia, as endpoints using rel­
atively few animals.177 More obesogens will likely 
emerge as more ‘‘subtle’’ effects are detected at doses 
that more closely emulate human exposure levels. 

Across different chemical classes reviewed here, 
numerous studies reported sex-specific effects. It 
is not clear whether these are true biological 
phenomena, spurious associations due to multiple 
testing, or artifacts of study design and publication 
bias (e.g. only examining/publishing data on one 
sex). Two primary facts support a biological 
underpinning to the gender specificity of obesogens. 
1) Many candidate obesogens cause sex-specific 
toxic effects on sexual maturation, reproduction, and 
cancers. 2) There are well-known sex effects on fat 
regulation, including the regulation of adipose tissue 
distribution and leptin signaling by estrogen.9,178 

Relative to body weight, children ingest more 
toxicants than do adults eating the same toxicant-
contaminated diet.179 Some obese children are likely 
at an even greater risk of toxic exposures than are 
lean children because of the content of their diet; 
higher consumption of fatty animal-based foods is 
correlated with higher levels of many POPs in human 
serum and milk.180–182 Given the number of POPs 
that are candidate obesogens, reducing consump­
tion of animal-based fatty foods is likely a sound 
anti-obesity life style choice both because of the 
nutritional benefit and the reduction of exposure to 
chemical contaminants. 
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